合聚咖

合聚咖

《Advances in Financial Machine Learning》读书札记 (一)

admin

此书源于一位朋友的推荐,看过标题后,觉得是又一本介绍行业发展的综述,遂定义为某周末咖啡厅的伴读。真正开卷之时,是在清明出行的高铁,随手翻看百页后, 竟觉得是学术、实践双优同行的深思之言,称得上近几年同类书中排前三的精华,书中大有可咀嚼、印证、深思之处,于是就有了这个系列的读书笔记。原书是英文写成,我的读书笔记,尽量用中文,一来上让自己用母语将自觉可深思一遍可以自动降速阅读,达到印证推敲的精读定位,二来也为一些不了解此书的国内同道省下些阅读时间,并方便与同道讨论。

前言 第一章 Financial Machine Learning as a Distinct Subject--作为一个独特学科的金融机器学习

Since 2010, Marcos has been a research fellow at Lawrence Berkeley National Laboratory (U.S. Department of Energy, Office of Science). One of the top-10 most read authors in finance ( SSRN's rankings ), he has published dozens of scientific articles on ML and supercomputing in the leading academic journals, and he holds multiple international patent applications on algorithmic trading.

Marcos earned a Ph.D. in financial economics (2003), a second Ph.D. in mathematical finance (2011) from Universidad Complutense de Madrid, and is a recipient of Spain's National Award for Academic Excellence (1999). He completed his post-doctoral research at Harvard University and Cornell University , where he teaches a Financial ML course for the School of Operations Research and Information Engineering. Marcos has an Erdős #2 and an Einstein #4 according to the American Mathematical Society.

2.金融机器学习项目失败的几个原因:

3).Graduation(实盘):策略进入实盘阶段,策略可以独立执行,也可以作为交易系统的一部分(如用于交易信号产生、信号过滤或资金管理),在这个阶段策略评估更加精细,包括风险、收益和成本归因。

4). Re-allocation(资金再分配): 基于策略表现,策略在分散组合中经常自动重新评估。一般而言,策略的资金分配遵循凹函数,初始仓位小,随着策略按预期运行时间的增加,仓位逐渐增加。再过一段时间,随着策略衰退,他们再逐渐缩小。

5). Decommission(策略终止): 所有策略都最终都会终止。当策略的表现在足够长的时间不符合预期时说明策略背后的理论已经被实证否定,此时应终止策略。